是阅读的时间:4分钟
最有利的机械齿轮系统之一是应变波齿轮,也称为谐波驱动器。它具有较高的齿轮降低比(范围从30:1到320:1),可以降低高速,无反冲和高扭矩,全部在紧凑而轻巧的系统中。由于这些能力,该系统通常用于机器人技术,航空航天和制造业。尽管非常有用,但由于其复杂的零件,应变波齿轮很难打印3D。让我们探索哪些3D打印过程和材料最适合创建应变波齿轮,包括其重要特征。
What is a Strain Wave Gear?
常规的应变波齿轮由3个不同的部分组成:圆形脊柱,弯曲和波发生器。这些零件都具有不同的功能,结合在一起以创建有效的速度降低齿轮系统。
波发电机是在谐波驱动器中创建运动的原因。使用椭圆形的圆盘,该零件旋转以移动周围的弹性弹簧。虽然其设计各不相同,但通常由外侧滚珠轴承组成。
该项目的焦点是弹性弹簧,是杯子的形状,齿轮坐在开放端的外部边缘。它是齿轮系统正常工作的关键,因为它必须既灵活又刚性。由于其弹性,弯曲的轮廓向波发生器的形状以及旋转时,它会在圆形样条的齿轮上移动。
圆形样条就像弯曲板一样,但更大,因为它是齿轮系统的外部。圆形样条的关键需求是,它的齿轮齿比弹性弹簧多。它还在开放端的内部有齿轮齿,以便它们与Flexspline的齿轮接触。
在这三个部分中,应变波齿轮可以有效地工作。随着波发电机的旋转,它使弹性板与圆形样条成为弯曲板。
但是,齿轮仅在弹性弹簧和圆形花纹的两个直径相对的部分中完全啮合。这是因为Flexspline具有较少的齿轮齿。通过找到还原比,可以找出弹性旋转的降低速度。
焦点
Our particular focus is on the flexspline, which is a challenging piece for 3D printing. The vast majority of commercially available strain wave gearing systems are made from metal materials, such as alloy steel, so we had to choose materials that would make the flexspline both flexible on the sides and rigid at the gear teeth.
许多业余爱好者尝试使用桌面打印机,结果好坏参半。有几个已使用现成的橡胶驱动皮带进行弹性弹簧。我们想测试一些传统的3D印刷材料和商业技术以及一些更新,更吹捧的过程。
Our process consisted of testing three different flexsplines: a Multi Jet Fusion one, a Polyjet one, and a Selective Laser Sintering one. The rest of the harmonic drive parts were made from Multi Jet Fusion. It was assembled using off the shelf components and powered with a stepper motor. We tested it at low speeds (~100 rpm) and then at higher speeds (~500 rpm) to see how the flexsplines would perform.
Multi-Jet Fusion
首先,我们测试了多喷射融合(MJF)Flexspline。MJF是一种较新的技术,并使用尼龙粉作为基本材料。
HP claims their tech is well suited for gear teeth. It looked great and had a smooth texture, which helped reduce friction.
Overall, it worked very well, both at low and high speeds. It has a bit of backlash, but that can be fixed in the actual design process. MJF is great, both very rigid and a bit elastic, making it a great 3D process for the flexspline.
Polyjet
Second, we tested the Polyjet process, using the rubber 90A shore hardness material, with the intention of replicating the results of an off the shelf rubber drive belt. That proved to be far more flexible than intended and lacking rigidity. This was not an issue at low speeds (below 100 rpm), and it worked relatively well.
但是,当波发电机以高速打开时,flexspline将开始工作,然后被卡住了很长时间。如果齿轮齿后面有硬塑料备份,那么这个过程可能会更适合,但是单独的材料引起了太多的摩擦,并且非常灵活。尽管可以进行调整以解决这些问题并提高性能,但PolyJet Flexspline对于该测试试验而言无效。
选择性激光烧结
第三,我们使用了由尼龙制成的选择性激光烧结(SLS)。在这种情况下,它比以前的两种材料都更加僵硬。像polyJet一样,SLS Flexspline在高速(大于200 rpm)下工作不佳。实际上,它被卡住后根本没有起作用,但是比polyjet flexspline更好。
主要要点
事实证明,多喷射融合是一种非常刚性但略带弹性材料的最佳过程。它非常适合齿轮齿,在所有挠曲曲线中运行最顺利。
polyjet是最灵活的,但灵活性并不是我们唯一应该考虑的事情。虽然可能对其他应用有用,但对于齿轮牙齿而言,如果不首先修改齿轮刚度,则它是不切实际的。
The SLS flexspline was good for low speeds, but the material was inconvenient at higher speeds. Of course, these are only the results from our observations, but MJF is still highly recommended for gears if one doesn’t want to alter the material.